
Design and Applications of a
Program Synthesizer

Candidate Number: 1076461
University of Oxford

Project Report
Honour School of Computer Science, Part B

Trinity 2025

Word Count: 4999

Abstract

Program Synthesizers are programs that write programs, usually
with a formal logical specification. In this project, we focus
on designing and building a PBE (Programming-by-Example)
Synthesizer, with the primary goal of being able to deduce
from a piece of data (such as, a set or sequence of integers),
a program that might have generated it, or which can explain
most of its content. Synthesizers of this sort are useful for pattern
recognition in settings where datasets are small and approximate
answers are not desired. We use a combination of enumerative
and Monte Carlo techniques, and discuss the practical and
theoretical implications of different possible design choices. The
resulting tool is very general, and can be used to evaluate
and compare the expressivity of programming languages, or to
try to determine the Minimum Description Length of different
sequences in (total) programming languages. We discuss the
results of some such experiments, and discuss potential future
extensions.

2

Contents
Abstract . 2

1 Introduction . 4
1.1 Goals & Motivation . 4
1.2 Report Structure . 5
1.3 Choice of Technology . 5

2 Program Evaluation . 7
2.1 Functional Terms . 7
2.2 Functional Languages . 8
2.3 Term Reduction . 9

3 Program Enumeration . 12
3.1 Basic Algorithm . 12
3.2 Caching . 13

3.2.1 Query Pruning . 13
3.2.2 Argument Pruning . 14
3.2.3 Caching Considerations . 14

4 Semantic Analysis . 16
4.1 Semantic Analysis Interface . 16
4.2 Semantics of Polynomials . 17

5 Encoding Schemes . 19
5.1 Query Selection . 19
5.2 Grammars Through Types . 19
5.3 Semantic Pruning . 21

6 Stochastic Search . 23
6.1 Metropolis-Hastings . 23
6.2 Application to a Functional Setting . 23

7 Results . 26
7.1 Enumerative Search . 27
7.2 Metropolis-Hastings Search . 27
7.3 Reflections . 28

A Appendix . 29
A.1 Lambda Calculus Basics . 29
A.2 Enumeration Time Table . 30

Bibliography . 31

3

1 Introduction
Program synthesis is the problem of generating a program from a certain specifi-
cation, often expressed as a logical constraint. The problem we consider is one of
Programming-by-Example (PBE) synthesis, where instead of a formal specification,
we attempt to generate a program using input-output pairs. This is useful in situa-
tions where we are interested in discovering exact, possibly complex patterns in a
piece of data. This method has strong limitations, as you might expect, but has the
advantages that it can work even when datasets are far too small to use statistical
methods, that we make very few assumptions about the data (beyond the fact that
it has some computable pattern), and that once we generate a program, we can
examine and completely understand its behaviour. Some notable applications of this
kind of PBE synthesis include:

1. “Flash Fill” [1]: This is the technology behind Microsoft Excel’s autocomplete
feature. It is what allows the software to detect and extend a user’s actions using
very few examples (often even just one).

2. “IntelliCode” [2]: This is a feature of Visual Studio Code which monitors a user’s
actions and attempts to discover the patterns of user’s edits, and then suggests
further refactors (usually only requiring 2 examples).

3. Query Synthesis [3]: PBE has been used to develop tools which construct SQL
queries based on small numbers of tuple examples of rows which should be
fetched.¹

PBE problems are, by their nature, underspecified, as there will usually be many
(even infinitely many) programs satisfying any set of input-output constraints, but
it does allow us to generate reasonable conjectures about the underlying structure
of any given piece of data. It has the very powerful property that we do not have
to write any kind of formal specification for our program, which is often not much
easier than writing the program itself.

1.1 Goals & Motivation
Although the tools developed throughout this project are very general and could be
applied to many different areas, we focus especially on synthesizing programs gener-
ating integer sequences. One motivating application of this could be in mathematical
research, where we might wish to guess patterns in structured integer sequences. This
is exactly the concern that the Online Encyclopedia of Integer Sequences (OEIS) was

¹This is not the same as Query-by-Example, or QBE, which is a feature of many databases which
provides a more user-friendly querying interface, and which has existed since the 1970s.

4

invented to address, and we will use its database to evaluate our program. However,
we also discuss how these tools could be applied elsewhere.

We also focus on synthesizing small solution programs. Firstly, because this
allows us to avoid overfitting. Secondly, because it will be helpful in eliminating
redundant programs, vastly reducing our search space. And thirdly, because the
minimum description length of a mathematical object or piece of data (i.e., the length
of the shortest program generating it) is known as its Kolmogorov Complexity, and
though it is incomputable, it is of theoretical interest.²

Of course, we cannot hope to produce a perfect synthesizer, so a great deal of
effort has gone into expanding the space of interesting programs that we can search.
This equates to narrowing the search as much as possible and expanding the portion
of the search space we can feasibly examine as much as possible. This means we
should both prune our search wherever possible and emphasize performance in our
code, both of which require added complexity in our synthesizer.

1.2 Report Structure
Each of the main chapters of this report covers a different aspect of this program
synthesizer, in varying levels of detail. We discuss the reasons behind each major
design decision, as well as their strengths and limits compared to other possible
decisions. The main chapters cover:
1. The interpreter used to evaluate programs.
2. The program enumeration algorithm.
3. The incorporation of semantic analysis into our search.
4. Different kinds of encoding schemes.
5. The use of the Metropolis-Hastings algorithm to expand the scope of our search

space.
6. The effectiveness of the synthesizer.

1.3 Choice of Technology
Because of the need for efficiency, I chose to use Rust to implement this synthesizer.
This complicated the implementation, but allowed me to make optimizations which
would not have been possible in a higher level language (such as Haskell, which
probably would have made building a prototype simpler).

²Notably, there are theoretical results showing that if we could compute Kolmogorov complexity,
we could approximate Algorithmic Probability, which in turn allows us to compute the source of
an infinite sequence correctly and with few errors. This formalizes our intuition that, when looking
at a piece of data from an unknown source, a “simple” program is more likely to have generated it
than a “complex” one. See [4] for more information.

5

In order to be clear and precise, I try wheverever possible to show the relevant
code, but for the sake of brevity and readability, I omit parts of the code which
add complexity without offering any insight (type casts, clones, trait derivations,
unreachable code branches, etc…), meaning code snippets as they appear in this
document may not be strictly correct.³

³In particular, it may include Rust-specific errors, such as ownership/borrow checker violations.

6

2 Program Evaluation
Throughout this project, we will only consider simply typed (total) functional lan-
guages without any advanced features (such as pattern matching, type constructors,
etc…).4 These languages are easy to define, implement, and analyze, and the fact that
they have a common grammar allows us to enumerate programs easily. What this
means is that a language’s behaviour should defined solely by the builtin primitives
it provides (See Section 2.2 for an example).

2.1 Functional Terms
We define expressions in such a language as follows:

pub type Thunk = Rc<RefCell<Term>>; // A pointer to a mutable term
pub type Value = Rc<dyn TermValue>; // A pointer to a value

pub enum Term {
 Val(Value), // A primitive value
 Var(Identifier), // A variable identifier
 Lam(Identifier, Rc<Term>), // A lambda abstraction
 App(Thunk, Thunk), // An application of one term on another
 Ref(Thunk), // Transparent indirection to another term,
 // (useful for implementing shared reduction)
}

The Value type stores a pointer to a value, whose type has been erased (similar
to how Haskell erases all type information at runtime). As an example, the 𝜆-term
𝜆𝑥.max(𝑥)(1) would be represented as follows (omitting pointers and Refs, and
denoting application by ⚬):

𝜆𝑥

⚬

⚬

max 𝑥

1

We define the size of a term as the number of nodes in this tree. For example, the
term in the figure above has size 6.

In order to simplify our code, define a term! macro which parses terms at
compile-time. This allows us to write in a more familiar Haskell-style syntax:

// A pure lambda-term
let apply = term!(f x -> f x x);

4Anyone unfamiliar with the basics of Lambda Calculus should see Section A.1 for some important
definitions.

7

// Inserting a term stored in a variable into a template.
let square = term!([apply] multiply);

// Literals are parsed as values
let two = term!((a b -> a) 2 "x");

// Brackets starting with a colon indicate a variables
// should be parsed as a value.
let two = 2;
let four = term!([square] [:two]);

2.2 Functional Languages
As stated earlier, in their most basic form, our languages are determined by the
primitives they offer, each of which will be annotated with a Type.

pub enum Type {
 Var(Identifier), // A base type
 Fun(Rc<Type>, Rc<Type>), // A function type
}

In order to evaluate a term, we will have to define the environment to run it in. We
do this by defining a Language trait (an interface, in other languages) with a method
to construct the Context terms will be evaluated in. We also provide a Builtin
type and a builtin! macro to simplify the definition of primitives, both of whose
definitions we omit from this report. A simple example we will revisit several times
is the language of polynomials with positive integer coefficients:

// Polynomials is a data structure with no fields
pub struct Polynomials;

impl Language for Polynomials {
 fn context(&self) -> Context {
 let plus = builtin!(
 N => N => N
 |x, y| => Term::val(x.get::<i32>() + y.get::<i32>())
);

 let mult = builtin!(
 N => N => N
 |x, y| => Term::val(x.get::<i32>() * y.get::<i32>())
);

 // Constants, which don't take any arguments
 let one = builtin!(

8

 N
 | | => Term::val(1i32)
);

 let zero = builtin!(
 N
 | | => Term::val(0i32)
);

 //Mapping from Identifiers to builtins
 Context::new(&[
 ("plus", plus),
 ("mult", mult),
 ("one", one),
 ("zero", zero),
])
 }
}

The Term::val function converts its argument into a Term by converting it into a
Value. The Term::get method casts a Term::Val into a given type (which can never
fail if our program is well-typed). It’s worth noting that these primitives are strict in
all their arguments. We can get around this by reducing to a projection term instead
of taking extra arguments:

// ifcte c t e = if (c) { t } { e }
// Lazy in `t' and `e'
let ifcte = builtin!(
 Bool => N => N => N
 |c| => if c.get::<bool>() {
 term!(t e -> t)
 } else {
 term!(t e -> e)
 }
)

2.3 Term Reduction
The implementation we use is essentially the graph reduction technique described
in The Implementation of Functional Programming Lanugages [5]. This allows for
laziness and shared reduction and is performant enough for our purposes, but more
sophisticated (even optimal) algorithms exist.

To evaluate a term, we reduce it until we reach a weak head normal form
(WHNF). That is, either a 𝜆-abstraction or a primitive function applied to too few

9

arguments. Our reduction strategy is based on spine reduction. We traverse the term
until we reach its head (the first subterm which is not an application), if this is an
application of a 𝜆-abstraction to an argument, we perform template instantiation,
substituting a reference to the argument in place of the parameter wherever it
appears in the body of the lambda term (this is where the Ref variant is useful).
If the head is a variable, we look it up in our context, and check if it is applied to
enough arguments to invoke its definition. If so, we evaluate all of its arguments
(hence the strictness of primitives) and replace the subnode at the with the result
of the invocation. We continue until we perform no more reductions. A simplified
version of the interpreter’s core code is shown below.

enum CollapsedSpine {
 // If spine is in weak head normal form
 Whnf,
 // A built-in function & a stack of arguments
 Exec(BuiltIn, Vec<Thunk>),
}

impl Context {
 // Caller function ignores output of collapse_spine
 pub fn evaluate(&self, term: &mut Term) {
 self.collapse_spine(&mut term, 0);
 }

 //The depth is the number of arguments along the spine, so far
 pub fn collapse_spine(
 &self,
 term: &mut Term,
 depth: usize
) -> CollapsedSpine {
 match term {
 Ref(r) => self.collapse_spine(r, depth),
 Val(_) | Lam(_, _) => Whnf,
 Var(v) => match self.lookup(v) {
 // If head is a variable takes no arguments, once again,
 // replace it and continue,
 Some(builtin) if builtin.n_args == 0 => {
 *term = builtin.func(&[]);
 self.collapse_spine(term, depth)
 },
 // If we have enough arguments to apply this function,
 // we start building a stack of arguments.
 Some(builtin) if builtin.n_args <= depth {

10

 Exec(builtin, vec![])
 }
 // If we do not have enough arguments, we are in WHNF
 _ => Whnf,
 }
 App(l, r) => match self.collapse_spine(l, depth + 1) {
 Exec(builtin, mut args) => {
 args.push(r);
 //If we have enough arguments, apply the function
 if args.len() == builtin.n_args {
 // The args will be in reverse order
 args.reverse();
 for arg in &mut args {
 self.evaluate(arg);
 }
 // Call function & continue
 *term = builtin.func(&args);
 return self.collapse_spine(term, depth);
 }
 // If we do not have enough arguments, keep pushing
 // onto the stack of parameters.
 Exec(builtin, args)
 }
 // Template instantiation
 Whnf => if let Lam(arg, body) = l {
 *term = body.instantiate(arg, r);
 self.collapse_spine(term, depth)
 } else {
 Whnf
 }
 }
 }
 }
}

11

3 Program Enumeration
The core of our synthesizer is its enumeration algorithm, which takes as input a
language, a size and a type, and enumerates the 𝛽-normal terms of that size with
that type in that language. The restriction to 𝛽-normal terms is useful because:

1. Every normalizable 𝜆-term has a unique normal form, so we never generate two
𝛽-equivalent terms.5

2. Every typable 𝜆-term is normalizable, so we don’t reduce the expressibility of our
language by only considering 𝛽-normal terms.

3. It vastly reduces our search space.

The term enumerator is the most performance-critical part of the code, and so has
been rewritten several times with increasing complexity to reach its current level of
performance. Because of this, we include very little code in this section, and focus
on the high level approach.

3.1 Basic Algorithm
Our enumeration method is based on the observation that every 𝜆-term in 𝛽-normal
form has the following structure:

𝜆𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛.𝑣𝑡1…𝑡𝑚
where 𝑣 is a variable and {𝑡𝑖} are also in 𝛽-normal form.

This suggests a recursive algorithm, where, given some type 𝑇 , we:

1. Enumerate over the variables 𝑣 which can appear as the head of a term of type 𝑇
(i.e, variables with types of the form 𝐴1 ⇒ ⋅ ⋅ ⋅ ⇒ 𝐴𝑘 ⇒ 𝑇 , where 𝑘 ≥ 0). We then
enumerate all 𝛽-normal terms of types {𝐴𝑖}, and apply 𝑣 to each combination
of them.

2. If 𝑇 ≡ 𝐴 ⇒ 𝐵, then we also enumerate the terms 𝜆𝑥.𝑀𝑖 of type 𝐵, where {𝑀𝑖}
are 𝛽-normal terms which may include some fresh variable 𝑥 of type 𝐴.

This corresponds to the following set of rules, which types exactly the 𝛽-normal
terms in any context Γ.

5However, we may still generate terms which are equivalent in a particular language (for example
(𝜆𝑥𝑦.(+)𝑥𝑦) is equivalent to (𝜆𝑥𝑦.(+)𝑦𝑥)), or which are 𝜂-equivalent. Both of these concerns can
be addressed using semantic analysis.

12

{Γ; 𝑥 : 𝐴} ⊢ 𝑏 : 𝐵 (Abs)
Γ ⊢ (𝜆𝑥.𝑏) : 𝐴 ⇒ 𝐵

𝑛 ≥ 0 𝑣 : (𝐴1 ⇒ ⋅ ⋅ ⋅ ⇒ 𝐴𝑛 ⇒ 𝑇) ∈ Γ Γ ⊢ 𝑎𝑖 : 𝑇𝑖 (App)
Γ ⊢ 𝑣𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛 : 𝑇

Since we only want to generate terms of a fixed size, at every point in the enumer-
ation, we must make sure to keep track of how large the term is so far, so that we
can backtrack whenever it gets too large.

3.2 Caching
While the above technique is fairly straightforward, it is difficult to attain high
performance. The most important optimizations we can make are those which prune
the search space as early as possible. Even costly optimizations of this sort will
usually save a lot of time. There are many possible techniques of this sort which could
be used, but we discuss only the two simplest and most important optimizations:

3.2.1 Query Pruning
A search (or enumeration) query in a particular language is defined by the type and
size of the enumerated terms. We can maintain a cache with the results of previously
made queries.

// A search query
type Query = (Type, usize);

// A map from queries to results
type PathCache<L: Language> = HashMap<Query, SearchResult<L>>;

// Since some queries have large results, we place a limit on
// how many terms we can store in a single cache entry.
pub const CACHE_SIZE_LIMIT: usize = 16;

// The result of a search query
pub enum SearchResult<L: Language> {
 Unknown, // If the search is still in process
 Inhabited {
 // The first few Terms output by this query
 cache: Vec<Term>,
 // The number of Terms that have been found
 // (may be more than those that have been cached)
 count: usize,
 // The state of the search after the Terms have been enumerated.

13

 state: Option<Box<SearchNode<L>>>,
 },
 Empty, // If the search does not yield any terms
}

Whenever we begin a new search, we consult the cache to see if this query has been
made before. If so, we either skip the search (if it’s Empty), or use the cached values
(before picking up the search at the point where the previous search ran out of space
in the cache). This is extremely useful, since many search queries yield few (if any)
results, even if the search would be very dificult.

3.2.2 Argument Pruning
When we use the (App) rule, we have to consider every combination of argument
sizes. For example, if we are trying to generate a term of type N and size 𝑘 by applying
arguments to the function (+) : N => N => N, then we will reach a point in the
search where we have the following search tree:

⚬

⚬

(+) Arg1

Arg2

Here, even with a simple function with only 2 arguments, Arg1 and Arg2 may have
any of the 𝑘 − 4 combinations of sizes adding up to 𝑘 − 3. We would benefit from
pruning this search space, so that we don’t begin to enumerate all the possible values
of one argument before realizing we have chosen an unsatisfiable size partition.

Here, with some modifications, we can again take advantage of our previous
cache, and prune any search paths which correspond only to partitions which do not
yield any output terms. This allows us to search only partitions where the result of
the search for each argument is either Unknown or Inhabited.

3.2.3 Caching Considerations
There are a few more considerations we have to take into account to get our
implementation correct. For example:

1. When we abstract over a variable, we may invalidate previous cache entries. For
example, a certain language may not have any variables of type 𝑇 , so if we run
the query (𝑇 , 1), we will mark it empty in the cache, but if we later make the
query (𝑇 ⇒ 𝑇 , 2), then can find the term 𝜆𝑥.𝑥, which has a subterm (that is, 𝑥)
of type 𝑇 and size 1, which contradicts our cache entry.

2. When we begin a search for the first time, we mark it as Unknown in the cache.
Later, when we complete it, we mark it Inhabited or Empty. We may select a

14

partition for (App) which includes a search with an Unknown result for a certain
parameter, which might turn out to be Empty. When this happens, we have to be
careful to end ongoing searches properly, which requires care. Similarly, we must
be careful when entering a search using a state from an Inhabited search result.

15

4 Semantic Analysis
While the enumerator may be sufficient to find simple programs in small program
spaces, we can massively shrink the program space by performing some semantic
analysis. This feature is optional and language-specific. We can do this by building
up a ‘Canonical’ representation of the semantics of each subexpression in any given
program. This way, we can enumerate only programs with distinct semantics. This
also speeds up the enumeration, since we can also avoid search paths which repeat
the same semantics more than once. For example, we might want to detect that the
programs (+) x y and (+) y x are the same, and therefore our enumerator should
output one of these, but not both.

4.1 Semantic Analysis Interface
Since these semantics are language-specific, we define a Language trait (or interface)
with methods defining the language’s Context and semantics:

pub trait Language: Sized + Clone + Debug {
 // The type of the semantic representation of programs of this
language
 type Semantics: Semantics + Sized;

 fn context(&self) -> Context; // The primitives this Language provides

 // Semantics of a variable (with type annotations)
 fn svar(&self, var: Identifier, ty: &Type) -> Analysis<Self>;
 fn slam(// Semantics of a lambda abstraction
 &self,
 ident: Identifier, // Variable being abstracted over
 body: Analysis<Self>, // Semantics of function body
 ty: &Type, // The type of the lambda abstraction
) -> Analysis<Self>;
 fn sapp(// Semantics of an application
 &self,
 fun: Analysis<Self>, // The function being applied
 arg: Analysis<Self>, // The argument to the function
 ty: &Type, // The type of the application
) -> Analysis<Self>;
}

pub enum Analysis<L: Language>
where
 L::Semantics: Semantics,
{

16

 Malformed, // Reject Term entirely (i.e, unnecessarily complex)
 Unique, // Allow, but do not construct canonical form
 Canonical(L::Semantics), // Group into equivalence class by
canonical form
}

As we build up the program, we also build up its semantics using the semantics of its
subterms.6 Since the semantics of each subterm depend only on the semantics of its
own subterms, we can ensure that any two terms with the same semantics (and the
same type) are interchangeable, and we don’t lose any expressivity by not repeating
terms with the same semantics.7 Since we shouldn’t expect to be able to able to
perfectly analyze every program, we include the Unique variant, which allows us to
indicate that a certain term should be treated as the sole term of its equivalence
class. We also include a Malformed variant, which allows us to indicate that a term
should not be included in our search at all.

4.2 Semantics of Polynomials
As a simple example, we revisit the Polynomials language. Since the programs
expressible here are the functions mapping to polynomials with coefficients in ℕ+,
we can convert to the following form:

𝜆𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛.(𝑎0 + 𝑎1(𝑣11𝑣12 ⋅ ⋅ ⋅) + 𝑎2(𝑣21𝑣22 ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅)

This leads to the PolySem data structure:

// Semantics of a term (a term taking zero or more arguments and
// returning a polynomial)
pub struct PolySem {
 arguments: Vec<Identifier>,
 polynomial: Sum
};

// A sum of products (i.e., a polynomial), with a constant shift
pub struct Sum(i32, Vec<Product>);

// A product of terms, with a constant scaling factor
pub struct Product(i32, Vec<Identifier>);

We can translate any expression into this form by expanding polynomials, though
we must be careful regarding variable collisions (especially with primitives). In order

6We are defining a fold (or catamorphism) from programs of a certain language (with type
annotations) to their canonical semantic representations.

7This is based on the idea of Contextual Equivalence: If two terms 𝑆, 𝑇 , have the same semantics,
then for any context 𝐶[𝑋], 𝐶[𝑆] should have the same semantics as 𝐶[𝑇]. Essentially, we are
forbidding introspection.

17

to ensure that this representation is unique, we can sort our variables & monomials
lexicographically. As you might expect, this greatly shrinks the space of programs
we are considering.

Term Size
(N => N)

Number of terms
(no analysis)

Number of terms
(analysis)

2 3 3
6 18 4
10 29 8
50 677 249

Polynomials are simple enough to be analyzed easily and exactly (i.e., we have
semantic equality between two polynomial terms iff their analysis yields 𝛼-equivalent
PolySems). We cannot hope to do this generally, but even in more complex languages,
we can still greatly reduce our search space by informing the enumerator of simple
equivalences.

18

5 Encoding Schemes
The tools we have developed for narrowing our search space thus far may seem
primitive, but with some care, we can exert greater control over the search space.

5.1 Query Selection
The most obvious way to restrict the enumeration is by modifying the type of
the program we are enumerating, and the context we feed into it. For example,
considering the Polynomials language and an integer sequence {𝑎𝑛}, we could choose
to synthesize:
▸ A mapping f : N => N from 𝑛 ↦ 𝑎𝑛.
▸ A function p : N => N => N which should be iterated: 𝑎𝑛+1 = 𝑝(𝑎𝑛), using the

given value of 𝑎0 (For example, if 𝑎𝑛 = ∑𝑛
𝑘=0 𝑘).

▸ Arguments z and f to the natural fold (or catamorphism) on the (Peano) naturals,
defined as:
foldNat : N => N => (N => N => N) => N
foldNat Zero z _ = z
foldNat (Succ n) z f = f (Succ n) (foldNat n z f)

▸ A function p : (N => N) => N => N whose fixed point is 𝑛 ↦ 𝑎𝑛. In this case, our
program p essentially acts as a recursive definition, akin to how recursive functions
are defined in denotational semantics: 𝑎𝑛 = 𝑓∞(𝑛) where 𝑓𝑛(𝑛) = 𝑝(𝑓𝑛−1, 𝑛).

▸ Many other possibilities.

Additionally, there are theoretical results about the expressiveness of programs
of different types. For example, if we were concerned with sequences of objects of a
finite type A, we could provide an equal? : A => A > Bool primitive and restrict
ourselves to the Regular Languages by constructing terms of type (A => Q => Q) =>
Q => Q (where Q is a type encoding the states of a DFA recognizing the language).
Alternatively, we could restrict ourselves to PTIME, PSPACE, 𝑘-EXPTIME, or 𝑘-
EXPSPACE (for any 𝑘).8

5.2 Grammars Through Types
As mentioned previously, our interpreter erases all type information at runtime.
What this means is that the type system we provide only serves to indicate to the
enumerator where each function is syntactically valid. This means that we can take
advtantage of this to specify a precise grammar for our language, beyond the basic
restriction of it being a functional language.

8See [6] or [7] for more.

19

For example, we might want to search the space of conjunctive queries
from database theory, which form a powerful language with simple seman-
tics:

𝜆𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛.∃𝑣1 ⋅ ⋅ ⋅ 𝑣𝑚 ⋀
𝑖

𝑃𝑖

where 𝑃𝑖 are atomic formulae. These could be defined with the following simple
grammar:

𝑄 → 𝜆𝑣𝑄
𝑄 → 𝐵

𝐵 → ∃𝑣𝐵
𝐵 → 𝐶

𝐶 → 𝑃 ∧ 𝐶
𝐶 → 𝑃

For any such rules, we can construct primitives with corresponding types, so that
program enumeration corresponds to searching the grammar:9

// Helper functions to unwrap terms
let int = |t: &Term| t.get::<u32>();
let bln = |t: &Term| t.get::<bool>();

// B -> C
let boolean = builtin! {
 Conjunction => Boolean
 |c| => c.clone()
};

// B -> ∃v.B
let exists = builtin! {
 // `exists l p` means `There exists an n in {1,...,l} such that p(n)`
 (Variable => Boolean) => Variable => Boolean
 context |input, pred| => Term::val(
 (1..=input) // Search range {1,...,n}
 .any(|n| // Evaluate predicate at each n
 bln(&context.evaluate(&term!([program] [:n])))
)
)
};

// C -> P
let conjunction = builtin! {
 Predicate => Conjunction
 |p| => p.clone()
}

// C -> P && C

9Here, our primitive must capture the Context in order to recursively evaluate its argument.

20

let and = builtin! {
 Predicate => Conjunction => Conjunction
 |p, b| => Term::val(
 bln(&p) && bln(&p)
)
};

Notice that there is a direct correspondance between the grammar and the terms of
our language: every type corresponds to a non-terminal, and every function corre-
sponds to a production rule, with parameters corresponding to the non-terminals
in the production rule, and the return type corresponding to the produced non-
terminal.10

5.3 Semantic Pruning
Semantics can be useful for narrowing our search space beyond just detecting
duplicate terms. For example, say we wanted to modify our Polynomials language to
include a construct to define variables, similar to Haskell’s let expressions, so that
we could, for example, write something akin to let y = x + 1 in y*y*y instead
of having to write x*x*x+(1+1+1)*x*x+(1+1+1)*x+1. This could be very useful to
our synthesizer, since it allows complex (but interesting) programs to have smaller
representations. Unfortunately, our simple functional languages based on the 𝜆-
calculus cannot support this construct. We might try to get around this restriction
by converting let constructs to 𝛽-redexes:

(let v = d in e) ⟼ (λv.e)d
Since our enumerator only generates terms in 𝛽-normal form, programs of this form
will never be generated. We can get around this by intruducing a new primitive:
let abstract = builtin! {
 (N => N) => N => N
 |e, d| => term!([e] [d])
};

This is because while (λv.e)d is not in 𝛽-normal form, (abstract e d) is (as long as
e and d are 𝛽-normal). However, if we do this, we will generate well-typed terms such
as abstract (plus one) zero instead of plus one zero, which many be undesirable.
If we have semantic analysis, the enumerator will detect these duplicates once they
are generated, but in more complex situations, we could avoid this by marking any

10Note that the only non-obvious correspondance is between 𝑏 and Variable => Boolean. this type
is chosen because we want 𝑏 to be parametrized by a new variable. this breaks the correspondance
because the grammar does not capture this behavior. instead, it is usually implied in our variable
terminals. 𝑄 does not have a corresponding function because 𝜆-abstraction is a basic feature of
functional languages.

21

term of the form abstract e as Malformed if e is not a 𝜆-abstraction which uses its
argument.

22

6 Stochastic Search
While enumeration can be used to search for small programs, it relies on completely
exhausting the search space, which is usually infeasible. To attempt to mitigate this,
we show how to use a stochastic method to generate larger terms.

6.1 Metropolis-Hastings
The Metropolis-Hastings algorithm is an algorithm to sample from a complex
probability distribution. In our case, we will define a distribution that assigns the
highest likelihoods to programs that perform best, and then sample from it in the
hopes that, since correct are the programs with the highest probability, we will pick
a program which performs well.

This is a Markov Chain Monte Carlo method, meaning it works by beginning
with some initial candidate and repeatedly transitioning to new ones. In order to
implement the Metropolis-Hastings algorithm, we will need to define:

1. A space 𝑋 over which our distribution acts.
2. A distribution ℙ : 𝑋 ⇒ ℝ.
3. A proposal distribution 𝑔(𝑥|𝑦), which we can efficiently sample from. This gives

the probability of proposing 𝑥 given that the previous proposal was 𝑦. It should
be possible to compute 𝑔(𝑥|𝑦)

𝑔(𝑦|𝑥) efficiently, and we must ensure that 𝑔(𝑥|𝑦) is nonzero
iff 𝑔(𝑦|𝑥) is.

Once we have these, the algorithm consists of:
1. Choosing an initial candidate 𝑥1.
2. Selecting a proposal 𝑝𝑛 according to 𝑔.
3. Set 𝑥𝑛+1 = 𝑝𝑛 with probability min(1, ℙ(𝑥𝑛)𝑔(𝑝𝑛|𝑥𝑛)

ℙ(𝑝𝑛)𝑔(𝑥𝑛|𝑝𝑛)), and 𝑥𝑛+1 = 𝑥𝑛 otherwise.
4. Repeating the previous 2 steps many times, then selecting the candidate with the

highest score.

6.2 Application to a Functional Setting
The method described here was inspired by [8], in which the Metropolis-Hastings
algorithm is used to generate “Superoptimized” assembly code (meaning, code which
is not just efficient, but the most efficient version way of accomplishing its purpose).
Converting to a functional setting brings a few challenges. For example, it’s unclear:

1. How to evaluate the correctness of a program. In the assembly setting, programs
were evaluated based on the Hamming distance between CPU registers after

23

executing the original and synthesized programs. However, this is probably not
effective in a functional setting.

2. How to mutate programs. In the assembly setting, there were several different
kinds of modifications that were possible which do not translate to a functional
setting (such as swapping the order of two instructions or replacing one with
a NOOP).

For the first issue, make a simple choice: The correctness of a program is just how
many examples it evaluates correctly. Then, we can define ℙ(𝑥) = 𝑒𝐶∗𝑁(𝑥), where 𝐶
is a parameter which we can tune, and 𝑁(𝑥) is the number of correct answers.

For the second issue, we introduce two new properties to Languages:
1. SMALL_SIZE: usize: The largest size we can efficiently enumerate entirely.
2. LARGE_SIZE: usize: A larger size, which will be more (but not prohibitively)

expensive to compute.

Now, we can define three types of mutations:
1. Variable Swaps, in which we replace one variable in a term with another of the

same type.
2. Small Subterm Swaps, in which we replace a small subterm with another of the

same size (and type).
3. Large Subterm Swaps, in which we replace a large subterm with another of the

same type, (though possibly not of the same size). This is important because it
allows our candidate program to change size.

We must be careful to ensure that the terms we generate are always in 𝛽-normal
form. If we do not, then we violate the requirement that 𝑔(𝑥|𝑦) is nonnegative iff
𝑔(𝑦|𝑥) is, since our enumerator never produces terms which are not in 𝛽-normal form.

We can select replacement terms uniformly at random by enumerating terms
(using reservoir sampling to avoid having to store the entire program space in
memory). Whenever we make a large swap, in order to compute 𝑔(𝑥|𝑦)

𝑔(𝑦|𝑥) , we may have
to enumerate not only the possible replacements, but also the terms with the size
and type of the replaced node, even though we don’t use any of them. Again, we
can use caching to mitigate this issue.¹¹

Another issue is that the candidate’s size tends to grow without bound. This is
because, when we perform a large swap, we are usually replacing a small subterm
with a large one (because there are many more small subterms than large ones).

¹¹We could also try to use a more clever counting algorithm which does not generate terms as it
counts them, but this would not work for languages with nontrivial semantics.

24

We can compensate by biasing our sampling algorithm to try to replace terms with
others of roughly the same size, but this is difficult since it may not always be
possible to construct terms of the right type of a specific size. To mitigate this issue,
we can include a correction term in ℙ(𝑥) which punishes terms for being too large.
Again, for brevity, we omit the implementation.

25

7 Results
The two languages we consider in this section are Polynomials, and NumLogic, a slight
modification/extension of the conjunctive query language shown in Section 5.2, with
the primitives below (along with a brief description):

-- Basic primitives:
mul :: Atom => Atom => Atom
mul a b = a * b

pow :: Atom => Atom => Num
pow b k = b^k

prime :: Var => Pred
prime = {true if n is prime}

and :: Pred => Conj => Conj
and p c = p && c

eq :: Atom => Atom => Pred
eq a b = a == b

less :: Atom => Atom => Pred
less a b = a < b

divisor :: Atom => Atom => Pred
divisor p q = p > 1 && q % p == 0

-- Reductions over ranges:
-- Check if a predicate is satisfied
exist :: Var => (Var => Bool) => Bool
exist v p = ∃n∈[1,..,v] (p n)

-- Count values with a property
count :: Var => (Var => Bool) => Num
count v p = #n∈[1,..,v] (p n)

-- Sum up values
sigma :: Var => (Var => Num) => Num
sigma v f = Σn∈[1,..,v] (f n)

-- Type casts:
atom :: Var => Atom
num :: Atom => Num
conj :: Pred => Conj
bln :: Conj => Bool

26

For NumLogic, we also include some pretty-printing functionality, which we will use
instead of displaying the full programs. For example, we write ∃n<=k [Prime(n)]
instead of exist k (n -> bln (conj (prime(n)))).

7.1 Enumerative Search
The enumeration is significantly more powerful than might be expected, especially
using caching and semantic analysis. For example, see the times needed to enumerate
NumLogic programs of type Var => Bool of different sizes in Section A.2. This
technique was able to discover formulas for many entries in the OEIS, sometimes
in interesting ways (see A008585, for example). All of the sequences below can be
generated in less than 20 seconds (They have size < 40):

1. A000961: Prime powers (f -> ∃k<=f [∃m<=f [Prime(m) && (f)=(m^k)]])
2. A002808: Composite numbers (f -> ∃k<=f [(k)|(f) && (k)<(f)])
3. A000430: Primes and squares of primes (f -> ∃k<=f [Prime(k) && (f)|(k*k)])

If we instead synthesize terms of the type Var => Num:

1. A230980: The number of primes below 𝑛 (f -> #k<=f [Prime(k)])
2. A168014: The sum of 𝑖 up to 𝑛 of the number of divisors of 𝑖 (f -> Σk<=f [#m<=f

[(m)|(f)]])
3. A000290: The squares (f -> Σk<=f [(f)])
4. A000590: Sums of 5th powers (f -> Σk<=f [Σm<=k [(k*k*k*k)]])
5. A325459: Sums of nontrivial divisors (f -> Σk<=f [#m<=k [(m)|(k) && (m)<(k)]])
6. A010051: The characteristic function of the primes (f -> #k<=f [Prime(f^k)])
7. A128913: 𝑛𝜋(𝑛) (f -> Σk<=f [#m<=f [Prime(m)]])
8. A008585: Multiples of 3 (f -> Σk<=f [#m<=k [(f^m)|(f*f*f))])

7.2 Metropolis-Hastings Search
In cases where the solution program is small, enumeration is always faster than sto-
chastic search. For simple languages, the Metropolis-Hastings synthesizer allows us
to search for larger programs than would be possible with enumeration alone, though
quite unreliably. For example, in Polynomials, consider the sequence 𝑎𝑛 = 6𝑛4 + 6𝑛2.
The shortest program generating this has size 30, and (on my machine) takes 19
seconds to generate through enumerative synthesis. A stochastic search (starting
with the smallest program of type N => N, so as to avoid a biased starting point)
on the other hand, is usually able to find it very quickly (usually around 1-2s, but
sometimes as fast as 0.3s). However, when it does not find a solution quickly, it often
does not find one at all.

27

In more complex settings, such as in the NumLogic language, I was not able to
make stochastic search effective. In both cases, the ineffectiveness is likely due to the
synthesizer’s tendency to search for increasingly large terms, but also is probably
because of poorly tuned parameters and a scoring function which is not particularly
useful when the proposal drifts too far from the solution. There are a lot of potential
improvements to be made, and this would be interesting to explore further.

7.3 Reflections
This project was a fascinating learning opportunity. It was especially interesting
to be able to apply several concepts from my recent modules in unexpected ways,
most notably Lambda Calculus & Types and Principles of Programming Languages.
While the final codebase sits at only around 5,000 lines, large portions had to be
repeatedly rewritten from scratch to acheive the final result. This was the most
difficult project I’ve undertaken, and even steps that seemed simple at the start
(such as implementing the enumerator efficiently) ended up being months of careful
effort. There are still many directions this work could continue in, for example, using
information about the provided input-output examples in the enumeration process,
or experimenting with different approaches to the stochastic search.

28

A Appendix

A.1 Lambda Calculus Basics

1. a 𝜆-term is either:
▸ a variable,
▸ an abstraction over another 𝜆-term (i.e., 𝜆𝑥.𝑚 where 𝑚 is a 𝜆-term),
▸ an application of two 𝜆-terms (i.e., (𝑚𝑛) where 𝑚, 𝑛 are 𝜆-terms).

2. The subterms of a 𝜆-term are all the 𝜆-terms which appear within it (including
itself).

3. A redex (from reducible expression) of a 𝜆-term is a subterm of a 𝜆-term of the
form (𝜆𝑥.𝑀)𝑁 .

4. Terms are 𝛼-equivalent if they are equal up to the renaming of bound variables.
5. 𝛽-reduction is the operation mapping a redex (𝜆𝑥.𝑀)𝑁 to 𝑀[𝑁/𝑥] (that is,

which substitutes 𝑁 for 𝑥 in the usual way, accounting for variable collisions).
When we say a 𝜆-term 𝛽-reduces to another, this may require more than several
reduction steps.

6. Two 𝜆-terms are 𝛽-equivalent if they 𝛽-reduce to a common term (up to 𝛼-
equivalence).

7. 𝜂-reduction is the operation mapping a term (𝜆𝑥.𝑀𝑥) to 𝑀 . 𝜂-equivalent terms
are not necessarily 𝛽-equivalent.

8. A 𝜆-term is in 𝛽-normal form if it does not contain any redexes. When it
exists, the 𝛽-normal form is unique and the same for all 𝛽-equivalent 𝜆-terms.

9. All 𝜆-terms have the form 𝜆𝑥1 ⋅ ⋅ ⋅ 𝑥𝑘.𝑡1 ⋅ ⋅ ⋅ 𝑡𝑚 where {𝑥𝑖} are variables, {𝑡𝑖} are
𝜆-terms, 𝑘 ≥ 0, and 𝑚 ≥ 1. We say 𝑡1 is the head of the 𝜆-term.

10. When the head of a 𝜆-term is a variable, it is in head normal form.
11. The order of a 𝜆-term is the order of its type, defined as:

order(𝑇) ≔ {0 if 𝑇 is a variable
max(1 + order(𝐴), order(𝐵)) if 𝑇 ≡ 𝐴 ⇒ 𝐵

29

A.2 Enumeration Time Table

Size # of terms Enumeration time (s)
8 1 0.00020
20 8 0.00295
25 52 0.01268
26 291 0.03499
27 220 0.03098
28 454 0.07579
29 344 0.08978
30 373 0.18885
31 390 0.22263
32 2231 0.51554
33 1080 0.57150
34 5138 1.3557
35 2558 1.4925
36 5929 3.1751
37 3788 4.2012
38 15703 8.3403
39 6516 15.090
40 56226 24.417
41 15572 40.995
42 106827 77.327
43 29220 102.68
44 171195 183.61
45 45822 256.10
46 496258 483.86
47 89844 746.35
48 1310846 1282.98
49 184442 2363.75
50 2313868 3836.52

30

Bibliography
[1] S. Gulwani, O. Polozov, R. Singh, and others, “Program synthesis,” Foundations

and Trends® in Programming Languages, vol. 4, no. 1–2, pp. 1–119, 2017.
[2] A. Miltner et al., “On the fly synthesis of edit suggestions,” Proc. ACM Program.

Lang., vol. 3, no. OOPSLA, Oct. 2019, doi: 10.1145/3360569.
[3] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Discovering

queries based on example tuples,” Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, 2014, [Online]. Available:
https://api.semanticscholar.org/CorpusID:6440703

[4] R. J. Solomonoff, “Algorithmic probability: Theory and applications,” Informa/
tion theory and statistical learning, pp. 1–23, 2009.

[5] S. L. Peyton Jones, The implementation of functional programming languages
(prentice/hall international series in computer science). Prentice-Hall, Inc., 1987.

[6] G. G. Hillebrand, P. C. Kanellakis, and H. G. Mairson, “Database Query
Languages Embedded in the Typed Lambda Calculus,” Information and Com/
putation, vol. 127, no. 2, pp. 117–144, 1996, doi: https://doi.org/10.1006/inco.
1996.0055.

[7] G. Hillebrand and P. Kanellakis, “On the expressive power of simply typed
and let-polymorphic lambda calculi,” in Proceedings 11th Annual IEEE Sym/
posium on Logic in Computer Science, 1996, pp. 253–263. doi: 10.1109/
LICS.1996.561337.

[8] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in
Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, in ASPLOS '13. Houston,
Texas, USA: Association for Computing Machinery, 2013, pp. 305–316. doi:
10.1145/2451116.2451150.

31

https://doi.org/10.1145/3360569
https://api.semanticscholar.org/CorpusID:6440703
https://doi.org/https://doi.org/10.1006/inco.1996.0055
https://doi.org/https://doi.org/10.1006/inco.1996.0055
https://doi.org/10.1109/LICS.1996.561337
https://doi.org/10.1109/LICS.1996.561337
https://doi.org/10.1145/2451116.2451150

	Abstract
	Introduction
	Goals & Motivation
	Report Structure
	Choice of Technology

	Program Evaluation
	Functional Terms
	Functional Languages
	Term Reduction

	Program Enumeration
	Basic Algorithm
	Caching
	Query Pruning
	Argument Pruning
	Caching Considerations

	Semantic Analysis
	Semantic Analysis Interface
	Semantics of Polynomials

	Encoding Schemes
	Query Selection
	Grammars Through Types
	Semantic Pruning

	Stochastic Search
	Metropolis-Hastings
	Application to a Functional Setting

	Results
	Enumerative Search
	Metropolis-Hastings Search
	Reflections

	Appendix
	Lambda Calculus Basics
	Enumeration Time Table

	Bibliography

